If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+3-10=0
We add all the numbers together, and all the variables
a^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $
| 25=c-19 | | 4(x+3)=2(x=7) | | 6x-1=13x-6 | | 34+56+x=90 | | 2x=90=x+95 | | 65+50+x=90 | | x2−18=0 | | -7+2m+10=15-2m | | (2x)+(x-6)=90 | | 1375=110x | | 15/b+2=3 | | 0.03t+10=40 | | 21+132+x=90 | | 5x+50+2000/x=10x+50 | | 33+29+x=90 | | 5x+50+2000x=10x+50 | | -x+105=4x | | 4.8=12r/r+12 | | 6x+10=x+65 | | 4x+89=9x-6 | | 1/4(m+2)=12 | | 1/3x+30=40 | | 15x+12x+15=180 | | -4x+2(5x-6=-3x-39 | | 5x-1=12-78 | | 5x-3x+11=0 | | 45+45(4x+18)=180 | | 35c+35=40c+65 | | 4x+13=-57+6x | | 10(b+1)=20 | | 2c+9=13 | | 4y2=5.76 |